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Proton nuclear magnetic resonance spectroscopy (1H NMR) and multivariate analysis techniques
have been used to classify honey into two groups by geographical origin. Honey from Corsica (Miel
de Corse) was used as an example of a protected designation of origin product. Mathematical models
were constructed to determine the feasibility of distinguishing between honey from Corsica and that
from other geographical locations in Europe, using 1H NMR spectroscopy. Honey from 10 different
regions within five countries was analyzed. 1H NMR spectra were used as input variables for projection
to latent structures (PLS) followed by linear discriminant analysis (LDA) and genetic programming
(GP). Models were generated using three methods, PLS-LDA, two-stage GP, and a combination of
PLS and GP (PLS-GP). The PLS-GP model used variables selected by PLS for subsequent GP
calculations. All models were generated using Venetian blind cross-validation. Overall classification
rates for the discrimination of Corsican and non-Corsican honey of 75.8, 94.5, and 96.2% were
determined using PLS-LDA, two-stage GP, and PLS-GP, respectively. The variables utilized by PLS-
GP were related to their 1H NMR chemical shifts, and this led to the identification of trigonelline in
honey for the first time.
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INTRODUCTION

The country of origin of honey sold in the European Union
(EU) must be clearly presented on the product label, as
prescribed by EU legislation (Council Directive 2001/110/EC).
This legislation is required because the geographical origin of
the honey is linked to consumer perception of its quality with
protected designation of origin (PDO) honeys often attracting
a premium price. The verification of labeling claims relating to
geographical origin utilizes diverse food traceability systems
to address EU legislation (2002/178/EC). In support of this
legislation, the EU-funded TRACE project was initiated (ww-
w.trace.eu.org). The TRACE project aims to “improve the health
and well-being of European citizens by delivering improved
traceability of food products”. In accordance with the aims of
the TRACE project, analytical fingerprinting techniques are
being exploited to confirm the geographical origin of foodstuffs.

Recent reviews of current analytical techniques applied to
the geographical origin determination of foodstuffs have been
presented by Reid et al. (1) and Luyex et al. (2). The
geographical origin of honey has previously been defined by a
range of analytical parameters, including elemental composition,
isotopic ratios (3), and complex chemical fingerprints (4). Honey

is a complex matrix reported to consist of at least 200
compounds (5). These compounds are particularly diverse and
include sugars (6, 7), flavonoids (8), enzymes (5), organic acids
(9), amino acids (10), phenols, and polyphenols (11). The floral
origin (12–15) and the species of bee that produces the honey
(16) influence the range and distribution of the compounds that
are present in honey. The determination of the concentration
of these compounds often requires specific analytical methods
for each compound type. Complex sample pretreatment is
frequently required to concentrate the analytes of interest and
to remove interfering compounds (12–14).

Here, the determination of the geographical origin of PDO
honey from Corsica has been undertaken using 1H NMR
spectroscopy and multivariate analysis techniques. The approach
taken requires minimal pretreatment of the honey, potentially
expediting geographical origin confirmation. 1H NMR spec-
troscopy facilitates the determination of highly specific and
quantitative fingerprints relating to the composition of the
product being analyzed. NMR spectroscopy also provides a
range of measurements with which to resolve the chemical
structure of compounds present in complex mixtures, and thus,
NMR fingerprint data are highly interpretable.

NMR spectroscopic data from Corsican and non-Corsican
honey were analyzed using three supervised statistical tech-
niques: projection to latent structures-linear discriminant
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analysis (PLS-LDA) (17), two-stage genetic programming (two-
stage GP) (18), and a novel combination of PLS and GP (PLS-
GP). The results from the PLS-GP model were used to determine
the presence of resonance peaks that confirmed the geographical
origin of Corsican honey. This study uses Corsican PDO honey
to demonstrate the use of 1H NMR spectroscopy and math-
ematical modeling methods for the verification of product origin.

EXPERIMENTAL PROCEDURES

Materials. All chemicals used were of analytical grade (g99%
purity). Deuterium oxide (2H2O) was supplied by Goss Scientific
Instruments Ltd. (Cheshire, United Kingdom), 3-trimethylsilyl[2,2,3,3-
2H4] propionic acid (TSP) was supplied by Avocado Research
Chemicals Ltd. (Lancashire, United Kingdom), sodium azide was
supplied by Sigma-Aldrich Co. (Dorset, United Kingdom), and dipo-
tassium hydrogen phosphate and dihydrogen potassium phosphate were
supplied by BDH Chemicals Ltd. (Dorset, United Kingdom). Ultrapure
water was provided from an Elga Option 2 water purifier.

Samples. One hundred and eighty-two honey samples were collected
from five countries, consisting of 10 different regions. The geographical
origin and the number of samples collected in each region or country
are given in Table 1. The Corsican honeys are representative of the
main production areas and floral types within Corsica. The honey types
and the number of samples analyzed are presented in Table 2.

Sample Preparation. Honey (50 g) that had previously been diluted
with distilled water to 70° Brix was homogenized using a Turrax mixer
(11000 RPM) for five 20 s periods. To prevent heating, a period of 5
min separated each mixing period. The honey was then placed onto a
rolling mixer (35 RPM) for 16 h until homogeneous (data not shown).

The homogeneous honey samples were diluted to 15 ( 0.5° Brix
(approximately 0.25 g of honey was dissolved into 1 mL of deionized
water). The diluted samples were centrifuged to remove any remaining
suspended material before filtration through a 0.2 µm PTFE syringe
filter. To prepare the sample for NMR spectroscopy, 480 µL of filtered
honey solution, 60 µL of sodium azide solution (10 mM dissolved in
2H2O), and 60 µL phosphate buffer solution (250 mM, pH 7.2
containing 10 mM TSP dissolved in 2H2O) were added to a labeled 5
mm diameter NMR tube. The tube contents were thoroughly mixed
using a vortex mixer before 1H NMR spectroscopy.

Spectral Acquisition. All experiments were carried out using a
Bruker Avance 500 MHz NMR spectrometer equipped with a TCI

cryoprobe. Spectra were acquired at a central frequency of 500.1323546
MHz using on-resonance presaturation to suppress the intensity of the
water signal. A 60° observation pulse length of 5.1 µs and a delay
between transients of 14 s were used. A total of 32768 complex data
points were acquired with a spectral width of 14 ppm, giving an
acquisition time of 4.6794 s. A recycle time of 18.7 s was determined
experimentally to produce quantitative data with optimized sensitivity.
Eight unrecorded (dummy) transients and 256 acquisition transients
were used, giving a total experiment time of approximately 1 h and 20
min. One-dimensional (1D) 1H NMR spectroscopic data were processed
using FELIX software (Accelrys, San Diego, CA). A sine bell-shaped
window function phase shifted by 90° was applied over all data points
before Fourier transformation, phase, and baseline correction. The
chemical shift of all data was referenced to the TSP resonance at 0
ppm. The area of this resonance was set to unity for all spectra acquired.

Two-dimensional (2D) 1H-1H total correlation spectroscopy (TOC-
SY) data were acquired using the standard spectrometer library pulse
sequence (19) with 56 transients, 384 increments, a spectral width of
13.33 ppm, and a spin-lock time of 100 ms. In the F2 dimension, 4096
datapoints were collected, and the F1 dimension was zero-filled to give
2048 data points. Optimized pulse lengths were calibrated for individual
experiments, and on-resonance presaturation was used to suppress the
intensity of the water signal.

Statistical Analysis. Statistical analysis was completed using a
custom written graphical user interface (GUI) for Matlab (The
Mathworks, Natick, MA; Version 7.4.0.287 [R2007a]) known as
Metabolab. Statistical analyses were completed using the full NMR
spectrum excluding data from the residual water resonance (4.7-4.9
ppm).

PLS-LDA. PLS (20) is a supervised multivariate method for the
determination of combinations of variables that result in optimal
separation of specified experimental groupings. A linear distance metric
applied following a PLS calculation constitutes PLS-LDA. PLS-LDA
was performed using dummy Y variables that represent membership
of either Corsican or non-Corsican groupings. Ten PLS components
were calculated using the NIPALS algorithm (21). Preprocessing
methods were evaluated, and the data were set to unit variance as this
was found to produce the most robust predictive models. The
Mahalanobis distance metric was used for LDA.

PLS models were constructed using 90% of the NMR data. The
omitted 10% of the data were used to determine the cross-validation
classification rate. This process was repeated iteratively until all data
had been used for cross-validation, resulting in 10 PLS models
containing 1-10 PLS components. This approach is often referred to
as Venetian blinds cross-validation. Cross-validation rates were the
number of correct predictions made by the PLS-LDA model expressed
as a percentage of the total number of predictions made per model and
presented as the mean for the 10 PLS-LDA models used for cross-
validation. Overfitting was determined to have occurred when the cross-
validation rate began to decline when further PLS components were
added to the calculation. The number of PLS components used was
thus determined to be one fewer than the point at which this
occurred.

Two-Stage GP (18). GP (22) is a computational learning technique
based on Darwin’s theory of evolution, the output of which is a
classification tree. The GP tree is a symbolic expression that can easily
be assessed to determine the variables from the input data that were
utilized for classification. In two-stage GP, the first stage used all
variables present in the data set. The second stage used only those
variables within a specified tolerance range, used by the final trees of
the first stage.

Each round of the two GP stages was completed using an island
population of 300, five island populations, 10 generations between island
migration, an island migration rate of 10%, a maximum GP tree size
of eight, and a tree mutation rate of 50%. At each generation, trees
were ordered by the value of their fitness function, which in this case
was the classification rate. The top 10% of GP trees were kept, and the
bottom 10% were removed. The stopping conditions enforced were
either classification of 100% of the data or evolution for 200 generations.
The first stage of GP used all of the variables within the 1H NMR
spectrum. The variables used in the second stage were constrained to

Table 1. Table Showing the Distribution of the Honey Samples

region no. of samples country no. of samples

Marchfeld 8 Austria 18
Muehlviertel 10
Carpentras 7 France 129
Corsica 111
Limousin 11
Bavaria 18 Germany 18
Galway 2 Ireland 2
Sicily 5 Italy 15
Trentino 5
Tuscany 5

Table 2. Specific Types and Sample Numbers of Corsican Honeya

Corsican honey type no. of samples analyzed

Arbousier (strawberry tree) 1
Châtaigneraie (chestnut) 20
Maquis d’automne (autumn scrubland) 17
Miellats du maquis (honeydew scrubland) 19
Maquis de printemps (spring scrubland) 15
Maquis d’été (summer scrubland) 6
Printemps (nonspecific spring) 14
Non AOC (nonspecific) 15
PrintempssClémentinier (spring clementine) 4

a The English translation of the honey type is presented in parentheses where
appropriate.
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those that were used in the generation of the final GP trees of the first
stage, with a tolerance on variable position of 10 units. Venetian blind
cross-validation was used omitting 10% of the data from each
calculation for subsequent validation.

PLS-GP. GP was performed using input variables determined from
a PLS calculation that included all of the 1H NMR data. To determine
the input variables used in the PLS-GP model, a plot of the numerically
ordered variable importance of projection (VIP) values from all
variables was constructed (Figure 1). A threshold was determined by
visual examination of Figure 1, and all variables with a VIP score of
greater than or equal to 1.67 were used to constrain the variables used
by GP. The conditions imposed on the GP algorithm were those used
in the two-stage GP. Venetian blind cross-validation was used omitting
10% of the data from each calculation for subsequent validation.

RESULTS AND DISCUSSION

1D 1H NMR Spectra. The 1D 1H NMR spectrum of a
Corsican honey is shown in Figure 2A. Glucose and fructose
resonances are labeled. The resonance observed at 0.0 ppm is
from the internal standard, TSP. Many other resonances are
observed in the NMR spectrum of the honey, and these are
largely shown in Figure 2B,C.

Statistical Results. The classification results obtained using
PLS-LDA, two-stage GP, and PLS-GP are presented in Table
3 as the percentage of the honeys that were correctly classified
upon cross-validation. These data are presented according to
sensitivity (Corsican samples correctly classified as Corsican
samples), selectivity (non-Corsican samples correctly classified
as non-Corsican samples), and overall correct classification (all
samples correctly classified by the model). The classification
rate that would be expected by chance is 50% for sensitivity,
selectivity, and overall classification rate. Although the sample
numbers were not equally balanced (61.0% of the samples were
Corsican, and 39.0% of the samples were non-Corsican), the
overall classification rates determined were significantly higher
than those that would be expected by probability alone.
Therefore, it is assumed that the imbalance in sample numbers
did not significantly alter the efficacy of the models.

PLS-LDA. Classification rates for the sensitivity and selec-
tivity were determined for the training and validation sets and
from each model generated. The classification rate obtained from
the validation data was highest when only two components were
used; therefore, the model generated using two components was

chosen as the best PLS-LDA model that was not over fitted.
The first two components captured 76.6% of the variance in
the data.

A PLS scores plot was generated using components 1 and 2
to visualize the separation of the data and is shown in Figure
3. The classification results obtained during cross-validation
from the PLS-LDA model using two PLS components are
presented in Table 3.

The overall classification rate that was obtained by PLS-LDA
of 75.8% is significantly greater than would be expected by
chance, and thus, the PLS calculation was able to identify traits
in the NMR data that relate to the geographical origin of the
honey. However, because of the relatively low classification rate
obtained using PLS-LDA, when compared to two-stage GP and
PLS-GP, the PLS-LDA models were not further interpreted.

Two-Stage GP. The classification results obtained by two-
stage GP are presented in Table 3. To visualize the variables
that were utilized in the generation of the GP trees, a histogram
showing the frequency of occurrence of the variables used
in the 10 GP trees, created during cross-validation, is shown
in Figure 4A. These variables were compared to those used
in the PLS-GP model. The overall classification rate that was
obtained using two-stage GP was 94.5%, providing a strong
indication that the NMR data can be used to verify the origin
of Corsican honey.

PLS-GP. The classification results obtained using a combina-
tion of PLS and GP were higher than either method used alone
and are presented in Table 3. The overall cross-validated

Figure 1. Plot of the VIP scores used in the PLS-LDA model for Corsican
honey classification. Variables are arranged in order of increasing VIP
value.

Figure 2. 1D 1H NMR spectrum of a Corsican honey. (A) Whole NMR
spectrum, all resonances above the horizontal line are from either glucose
or fructose. Panels B and C are expansions of the spectral regions
6.0-9.0 and 0.5-2.5 ppm, respectively. These regions have been
magnified along the vertical scale to show the presence of nonglucose or
fructose resonances present in the honey spectrum.

Table 3. Overview of the Classification Rates upon Cross-Validation
Determined for Corsican Honey Using PLS-LDA (Two Components),
Two-Stage GP, and PLS-GP Models

model sensitivity (%) selectivity (%) overall (%)

PLS-LDA 72.1 81.6 75.8
two-stage GP 96.4 91.5 94.5
PLS-GP 98.2 93.0 96.2
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classification rate using this combined approach was 96.2%. A
histogram showing the frequency of occurrence of the variables
used in the 10 GP trees, created during cross-validation, is shown
in Figure 4B. The variables chosen by the PLS-GP model are
similar to those chosen by the two-stage GP, although the PLS-
GP model used a reduced number in the predictive trees, aiding
the identification of the most pertinent variables. Analysis of
the 10 individual GP trees generated by this model was
completed, and the tree with the best classification rate was
determined. A graphical representation of this tree, which
correctly classified the honey data set with classification rates
of 97.3, 97.2, and 97.3% for the sensitivity, selectivity, and
overall rate, respectively, is shown in Figure 5.

Corsican Honey Biomarkers. The variables used by the
most successful PLS-GP model were converted to their corre-
sponding 1D 1H NMR chemical shifts. The typical peak width
at half-height for a singlet resonance present in the honey 1H
NMR data was approximately 1.1 Hz. The spectral resolution
was 0.21 Hz; therefore, each NMR resonance corresponded to
a minimum of 10 variables. Variables corresponding to the
same NMR resonance were grouped, and their combined
frequency of occurrence within the cross-validation GP trees
was calculated. The honey NMR spectra were examined to
determine the significance of these resonances in the deter-
mination of the geographical origin of the honey. A descrip-
tion of the significance of the highest occurring variables is
presented in Table 4.

The identification of compounds giving rise to resonances
present in the honey NMR spectra was undertaken using both
1D and 2D NMR techniques. Where standard compounds were
available, spiking experiments were used to confirm tentative
NMR assignments made by comparison to spectral databases
and by data interpretation. 2D 1H-1H TOCSY NMR spectra
were acquired of honeys containing elevated amounts of each

variable listed in Table 4. Where TOCSY correlations were
observed, the chemical shifts of the coupled protons are
presented.

The chemical environment was determined from chemical
shift information (23). Where available, the relative integrals,
peak multiplicity (d ) doublet, dd ) double doublet, m )
multiplet, s ) singlet, and t ) triplet) and coupling constants
are presented in parentheses. Data assessment focused on those
variables listed in Table 4 and is presented below in the order
of the frequency of occurrence of the variables in the PLS-GP
trees.

Variables 8425-8507. This corresponds to a resonance at δ
) 8.221 (1H, d, 8.3 Hz). This resonance was coupled to
resonances at 7.873, 7.865 (overlapping resonances 2H, m), and
7.571 (1H, m) ppm. Another resonance, δ ) 6.952 (1H, s) ppm,
was also from the same molecule. It was concluded that this
molecule was a fused aromatic ring system, possibly a coumarin
derivative substituted at either the 5- or the 6-position within
the fused ring structure. Coumarin has previously been found
in French lavender honey and was proposed as a marker for
honey age (24). Acquisition of NMR spectroscopic data from
a standard determined that these resonances were not from
coumarin.

Figure 3. PLS-LDA scores plot of the Corsican honey classification model.
The axes of the plot are PLS-LDA components 1 and 2.

Figure 4. Plot of the number of times each variable was used in the final
Corsican honey classification models generated by (A) two-stage GP and
(B) PLS-GP.

5454 J. Agric. Food Chem., Vol. 56, No. 14, 2008 Donarski et al.



Variables 0-5. NMR resonances were not observed in any
of the honey spectra at this chemical shift range. The intensities
at these positions represent typical baseline values.

Variables 11299-11343. This variable range corresponds to
a resonance at δ ) 6.997 (1H, d, 8.7 Hz) ppm that is coupled
to a resonance at δ ) 7.350 (1H, d, 8.7 Hz) ppm. It was
concluded that these resonances were from either a 1,4- or a
1,2,3,4-substituted aromatic molecule. Aromatic compounds
matching this description that have been demonstrated to be
present in honey include p-hydroxybenzoic acid and p-coumaric
acid (25). Acquisition of data from standards of these com-
pounds determined that neither gave rise to these variables.

Variables 25307-25432, 24435-24474, and 25148-25189.
These variable ranges correspond to resonances at δ ) 1.018
(1H, s), δ ) 1.376 (1H, s), and δ ) 1.080 (1H, s) ppm,
respectively. The chemical shift ranges of these resonances
suggest that they are from methyl groups.

Variables 7003-7027. This variable range corresponds to a
resonance at δ ) 9.131 (1H, s), which was coupled to
resonances at δ ) 8.848, 8.834 (overlapping resonances, 2H,
m), 8.088 (1H, m), and 4.440 (3H, s) ppm. It was hypothesized
that these resonances were from trigonelline. A spiking experi-

ment was performed (Figure 6), and the identification of this
biomarker as trigonelline was confirmed. The samples containing
trigonelline were from Germany, Austria, and France (Limou-
sin), where nine, six, and one sample contained trigonelline,
respectively. Trigonelline is a plant hormone generally present
in herbaceous species of saline and dry habitats (26) and is
known to accumulate in salt-stressed plants (27).

Variables 22316-22448. Analysis of this region determined
that it contained several resonances and that the profile of these
resonances varied between samples. Therefore, a specific
resonance assignment was not possible.

This study has demonstrated the feasibility of developing
accurate models that can be used for the identification of
Corsican honey using 1H NMR spectroscopy. The most accurate
of these models was produced using a combination of PLS and
GP with PLS used as a variable selection step to determine input
variables for GP. This approach resulted in an overall correct
classification rate for the verification of Corsican honey of 96.2%
upon cross-validation, with individual GP trees classifying with
an overall rate of up to 97.3%. The PLS-GP model was easily

Figure 5. GP tree for the classification of Corsican honey using PLS-GP. The overall classification rate obtained by this tree when used to classify the
honey as Corsican or non-Corsican is 97.3%. V, variable; SQRT, square root; +, summation; -, subtraction; min, minimum; and AVG, average.

Table 4. Highest Occurring Variables Used in the PLS-GP Model and a
Brief Description of Their Significance for the Classification of Corsican
Honey

variable

1H chemical
shift range (ppm)

occurrence
in PLS-GP commenta

8425–8507 8.1989–8.234 233 elevated Corsican marker
0–5 11.832–11.834 208 no resonances, baseline value
11299–11343 6.987–7.006 173 elevated Corsican marker
25307–25432 0.967–1.020 115 elevated Corsican marker
24435–24474 1.376–1.393 80 elevated non-Corsican marker
25148–25189 1.070–1.088 60 elevated Corsican marker
7003–7027 8.831–8.842 57 elevated Non-Corsican markers

mainly Austria/Germany
22316–22448 2.244–2.298 51 decreased in non-Corsican

samplessAustria

a Comments are given to describe the significance of each variable range. No
comment is applicable to all samples but describes a significant subset of each
region or country. Figure 6. 1D 1H NMR spectrum of the region 8.0-9.2 ppm of (A) Bavarian

honey and (B) Bavarian honey spiked with trigonelline. Resonances
observed from trigonelline are labeled*.
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interpretable and was used to identify the variables (and the
resulting NMR spectroscopic resonances) used for classification.
NMR spectroscopy has been used to determine the molecular
structural characteristics of those compounds that gave rise to
the variables that were most pertinent to the classification of
Corsican honey. Trigonelline is reported for the first time in
honey. Trigonelline may prove to be indicative of geographical
origin (saline habitat) or growth conditions (dry habitat). These
results have also identified the presence of four biomarkers of
Corsican honey that will be further interrogated in future studies
to fully elucidate their structure.

The methods that have been presented here clearly provide a
basis for the use of molecular fingerprinting for the determi-
nation of the origin of food. Often the determination of
geographical origin can be complicated by the incomplete
correlation between analytical parameters and geographical
boundaries. Here, the data generated have been interpreted in
the context of honey derived from the island of Corsica.
However, the approach taken may be more appropriate for the
determination of botanical and processing factors that are often
regional in nature and have a highly specific impact on the
overall molecular composition of foodstuffs.
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